Embedded C Moving Average
GIT-Repositories Index-Seite aller GIT-Repositories, die von diesem Server über HTTPS kloniert werden können. Bersichtsseite aller GIT-Repositories, die von diesem Server aus ber git clone (HTTPS) erreichbar sind. Ein Bündel von Service-Skripts zum Konvertieren, Analysieren und Generieren von Daten. Ein paar Dienstleistungen zum Konvertieren, Analysieren und Generieren von Daten. Swlib (PHP) Eine PHP-Bibiothek mit: Wrapperklassen fr Dateisystemfunktionen, Tracing, Sessions, Ausgabepufferung lokalisierbare Fehlermeldungen, implizit Umwandlung von Fehlern in Ausnahmen Kommandozeilen-Ausfrhungen und Abfangen von STDOUT, STDERR mit Callbacks. Kalender und Datumsfunktionalitt elaborierter FFmpeg Wrapper (Metadaten und Konvertierung von Audio Video) OpenSSH Key-Generierung und - Verwaltung automatische Erstellung von Podcast-Feeds, RSS Feed Renderer Renderer von LaTeX-Formeln. Eine kleine PHP-Bibliothek enthält: Wrapper-Klassen für Dateisystemfunktionen, Tracing, Sessions, Ausgabepufferung lokalisierbarer Fehlermeldungen, implizite Konvertierung von Fehlern in Ausnahmen CLI-Programmausführung mit STDOUT STDERR-Abruf (optional mit Callbacks) Datums - und Kalenderfunktionalität (UTC, GM) ausgearbeiteten FFMPEG-Wrapper (Lesen und Konvertieren von Metadaten / Format von Audio-Video) OpenSSH Schlüsselpaar-Generator und Organizer automatische Podcast-Feed-Generator, RSS2 Renderer LaTeX Formel Renderer. GNU octave web interface Eine Webschnittstelle für GNU Octave, die es erlaubt, wissenschaftliche Berechnungen aus Netbooks, Tabellen oder Smartphones durchzuführen. Die Schnittstelle bietet einen Webformulargenerator für Octave-Skriptparameter mit Vorvalidierung, automatische Skriptlistengenerierung sowie Präsentation von Ausgabetexten, Figuren und Dateien in einer Ausgabe-HTML-Seite. Ein Webinterface von GNU-Octave, mit den wissenschaftlichen Berechnungen von Netbooks, Tablets oder Smartphones aus durchgefhrt werden knnen. Die Schnittstelle beinhaltet einen Formulargenerator fr Octave-Scriptparameter, mit Einheiten und Einfabevalidierung. Textausgabe, Abbildungen und generierte Dateien werden abgefangen und in einer HTML-Seite angezeigt. Digitale Filter in C fr Embedded-Anwendungen Digitale Filter in C für den Einsatz in eingebetteten Anwendungen IIR Tiefpass-Beispiel Hier sehen Sie einen Tiefpaß erster Ordnung. Es hat ein ähnliches Verhalten wie ein analoger RC-Tiefpass (Widerstand und Kondensator). Es ist sehr schnell berechnet und gut für Anwendungen, wo Sie Rauschen aus Ihrem Eingangssignal entfernen möchten. Er benötigt zwei Konfigurationswerte, wobei die Summe von beiden 1 sein muss. Je höher der Coeff1 ist, desto mehr Rauschen wird entfernt, desto langsamer ist die Reaktion des gefilterten Ausgangs. Je höher der coeff0 ist, desto schneller ist der Ausgang, aber mehr Rauschen kann passieren. Die Beispielimplementation verwendet Fließkommazahlen, auf einem Mikrocontroller ist es oftmals sinnvoll, diese mit ganzen Zahlen zu ersetzen. IIR Tiefpass-Beispiel Hier eine Beispielimplementierung von einem Tiefpass. Er verhält sich wie ein analoger RC-Tiefpass (aus Widerstand und Kondensator). Es ist sehr schnell und gut wenn hochfrequente Strungen aus einem Eingabesignal entfernt werden sollen. Bentigt,. Je hher coeff1. Desto strker wird auch die Ausgabe des Filters. Je hher coeffs0. Deutsch - Übersetzung - Linguee als Übersetzung von "rauschen" vorschlagen Linguee - Wörterbuch Deutsch - Englisch Andere Leute übersetzten. Die Beispiel-Implementierung nutzt Fliekommazahlen, fr Microcontroller Wird stattdessen Integer-Variablen verwendet werden. Gleitender Durchschnitt Ein gleitender Durchschnittsfilter (oder Gleitfensterfilter) ist ein spezieller FIR-Filter, der schnell berechnet werden kann. Sie erstellen einfach den Durchschnitt über die letzten N Eingabewerte. Dieser Filter hat eine bessere Reaktionszeit als der IIR-Tiefpass, der vorher gezeigt wurde, und er löscht das Rauschen ziemlich moderat. Nachteil: Sie benötigen mehr Speicher. Wir verwenden einen Ringpuffer, um die Wertehistorie und eine Variable zu speichern, in der wir die Summe dieser Werte speichern. Wenn wir einen neuen Wert erhalten, subtrahieren wir einfach den ältesten Wert in der Historie, fügen den neuen Wert hinzu und überschreiben den ältesten Wert mit dem neuen Wert. Nach der Summe müssen wir uns nur durch die Anzahl der Werte teilen, die wir haben - und es gibt unsere gefilterte Ausgabe. Zuerst die Gleitkomma-Variante: Moving Average Ein Moving Average Filter (oder Sliding Window Filter) der Mittelwert der letzten N Eingabewerte. Wie der IIR Rauschunterdrckung. Nachteil: Er braucht Speicher, war auf kleinen Mikrocontrollern ein Problem sein knnte. Der Algorithmus berechnet einfach die Summe der Vergangenheitswerte geteilt durch die Anzahl an Vergangenheitswerten (Mittelwert eben). Mit einem kleinen Trick. Mit einem kleinen Trick. Wenn ein neuer Eingabewert kommt, so subtrahieren wir den Wert und addieren den neuen. Danach mssen wir das neue Egebnis. Erstmal die Floating Point Variante: Jetzt das gleiche mit Integer-Variablen. Wenn wir nicht über eine Gleitkommaeinheit verfügen, können wir etwas Zeit sparen und durch Kräfte von zwei rechts umschalten ein paar Bits teilen. Aber dann müssen Sie darauf achten, dass Ihr Ringpuffer 2BITS-Werte hat. Nun das Selbe mit Integern. Vielen Dank für Ihre Bewertung! Deutsch - Übersetzung - Linguee als Übersetzung von "nach oben" vorschlagen Linguee - Wörterbuch Deutsch - Englisch Andere Leute übersetzten. Das lsst auch fr alle Puffergren von 2BITS machen. Der Ringbuffer im Beispiel hat 8 Werte, und mit summe gtgt 3 haben wir die Summe durch 8 geteilt. Gemeinsame FIR Filter FIR Filter Die folgenden Quelltexte sind implementiert ein zyklisch auf viele FIR Filter. Wie beim Moving Average Filter (der ein FIR-Filter ist) mssen auch hier die Vergangenheitswerte gespeichert werden. Zudem gibt es einen Speicherbereich mit Koeffizienten, der so groß ist wie der Wertpuffer. Alles was der Filteralgorithmus ist, muss zusammengefaßt werden. Die Anzahl und die Werte der Koeffizienten bestimmen, war der Filter tut. Er kann Tiefpass, Hochpass, Bandpass, Bandsperre und vieles mehr sein. Deutsch - Übersetzung - Linguee als Übersetzung von "imperator" vorschlagen Linguee - Wörterbuch Deutsch - Englisch ausschließlich englische Resultate für. Vor allem in DSPs sieht man daher MAC-Operationen, Multiply und Accumulate, d. h. In einem Schritt multiplizieren sie zwei Zahlen und addieren das Ergebnis zu einer Summe hinzu. Abhngig von den Features eines Controllers sollte auch noch von C auf Assembly ausgewichen werden (z. B. gibt es auch Prozessoren, die die MAC-Operation rechnen und im selben Schritt das nchste Wert-Koeffizient-Paar anvisieren, usw. usw.). Besser lesbar ist aber dieses Beispiel in C. Die Koeffizienten habe ich so gewhlt, dass diese FIR identisch mit dem Moving Average Filter ist. Es ist auch ein leicht nachvollziehbares Beispiel: Statt zum Schluss. Da kommt das Selbe raus. Weitere Filter: Filter für Erotikinhalte Suchergebnisse für: GNU Octave. (Die Software ist kostenlos). Erstmal mit Fliekommazahlen: Der Algorithmus ist recht selbsterklrend, zwei Sachen aber noch angemerkt: Wir fllen den Ringpuffer rckwrts, denn dann sind die Vergangenheitswerte zum Rechnen schon richtig geordnet. D. h. Der vorherige Wert ist nach vorn, der davor zwei nach vorn usw. Wir rechnen in zwei Schleifen, in der Schleife erspart bleibt. Deutsch - Übersetzung - Linguee als Übersetzung von "es kommt richtig" vorschlagen Linguee - Wörterbuch Deutsch - Englisch ausschließlich englische Resultate für. Und hier das ganze nochmals mit Festkomma-Arithmetik. Wir verwenden den Filter, der auch als fnfzehnten - genannt Q15 - Zahl bezeichnet wird. Die Integerwerte gehen von -35768 bis 35767, d. h. Der Integerwert 0x0001 entspricht dann 1/35768. Die 8 Koeffizienten geben auch nicht mit 1.0 / 8 an, sondern mit 35768/8 oder (1ltlt15) / 8. Weiterhin mssen Wir beachten, dass beim Multiplizieren sich das Komma an das 30te bit heftet (gem ein Kilometer ist nicht 1000 Quadratmeter, sondern 1000000). Das wird nach dem Multiplizieren und Aufsummieren wieder das Komma um 15 bit nach unten geschoben, von Q30 nach Q15. Die dritte Sache: Wir mssen beim Multiply-And-Accumulate auf berlauf Prfen, das passiert im MAC Makro. Vierte Sache: Wir wollen runden. Also beladen wir 0,5 in die Summenvariable (den Akkumulator) und zwar in Q30. Das entspricht 1ltlt14. Der Rest ist wie bei der Festkomma-Rechnung. Hauptprogramm für die Beispiele In Kombination mit dem Makefile wurden die obigen Beispiele in separaten ausführbaren Dateien zusammengestellt. Dies ist das Hauptprogramm für alle von ihnen. Haupt-Programm in diesem Beispiel werden alle oben genannten Beispiel-Quelltexte in separaten Ausfhrbare Programm kompiliert. Dabei enthlt diese Datei die main () Funktion, welche sich zur Eingabe und Ausgabe kmmert. Sie ruft die jeweilige Filterinit () und Filter () Funktionen auf. Driving die grüne Revolution im Verkehrstechnologie Fortschritte weiter zu elektrifizieren Autos, ermöglichen neue Wirkungsgrade. Der Automobiltransport unterliegt einer Revolution, denn die fortschrittliche Elektronik ermöglicht die Elektrifizierung von Fahrzeugmotoren sowie die Steigerung von Automatisierung, Sicherheit, Komfort und Komfort. Der exponentielle gleitende Durchschnitt ist ein Typ des IIR-Filters, der einfach in C implementiert werden kann und minimale Ressourcen verwendet. Anders als ein einfacher gleitender Durchschnitt erfordert es keinen RAM-Puffer, um vorherige Abtastwerte zu speichern. Es muss nur einen Wert (der vorherige Durchschnitt) zu speichern. Ein exponentieller gleitender Durchschnitt wird als die folgende Gleichung ausgedrückt: avgn (in alpha) avgn-1 (1-alpha). Die Implementierung dieser Gleichung mit Floating-Point-Mathematik ist einfach, aber mit festen Punkt-Variablen ist ein wenig heikel. Das Code-Snippet verwendet hier 32-Bit-signierte Ganzzahlen für die Durchschnitts - und Eingabewerte. Zwischenwerte müssen 64-Bit-Mathematik verwenden, um Überlauffehler zu vermeiden. Alpha-Werte in der Nähe von Null repräsentieren eine starke Mittelung, während ein Alpha-Wert von einem keinen Mittelwert hat. Wie andere bereits erwähnt haben, sollten Sie einen IIR-Filter (endlose Impulsantwort) anstelle des FIR-Filters (Finite Impulse Response) verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen, die Sie kennen sind Lärm zu dämpfen, ist ein einpoliger Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenter Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Bei kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die vom oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie etwa 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch ein Unterprogramm, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Abmessungen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie immer sollten einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample eingeht, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben ein erster Ordnung IIR-Filter der Wert you39re subtrahieren isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spike haben, wenn die Eingangsänderung und wieder 1ms später erfolgt Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration. Was ist der Vorteil davon
Comments
Post a Comment